(結晶シリコン太陽電池用受光面銀ペーストの焼成挙動について) (Firing behavior of front-side Ag paste for crystalline silicon solar cells)

川本 裕介, 吉野 泰, 杉村 健一

Yusuke Kawamoto, Yasushi Yoshino, Kenichi Sugimura

(株)ノリタケカンパニーリミテド

NORITAKE CO., LIMITED

高結晶シリコン太陽電池用銀ペーストの焼成時の挙動を解明し、高い出力の得られる銀ペーストを研 究することを目的として、平成19年度3月から装置利用を開始している。p型シリコンウエハ上にn 層、SiNx反射防止膜を形成し、作製したセルを使用して出力評価を行った。

Silicon solar cell electrodes are typically formed by using the screen printing technique. Good fire-through properties are required for an Ag electrode for the front-side surface: insufficient fire-through causes higher contact resistance (Rc), which decreases the conversion efficiency of solar cells. In order to control the fire-through properties, contact formation mechanism is important. In this study, phosphorus diffusion profiles and firing conditions have a positive/negative effect on fire-through of Ag paste.

<u>背景と研究目的</u>: 現在、太陽電池市場は急 速に拡大しており、その市場の中でも大部分を 結晶シリコン太陽電池が占めている。受光面側 には銀ペーストが、裏面側にはアルミペースト と銀ペーストが電極として用いられており、ス クリーン印刷を用いて低コストで電極を形成し ている。さらなる高効率化、低コスト化への要 求が高まる中で、生産性の向上および出力特性 向上のために高速焼成が主流になってきており、 電極ペーストの焼成挙動を解明し、ペースト組 成・焼成条件を最適化し、高速焼成に対応する ことが必要となる。本研究では、結晶シリコン 太陽電池用電極ペーストにおいて、特に受光面 銀ペーストにおける焼成挙動の解明を目的とし、 高い出力を得られる銀ペーストの研究を行う。

<u>実験</u>: 市販のシリコン基板 (p型,抵抗率3~ 10 (Ω·cm), CZ:110,厚さ:200 μm)を用いた。拡 散炉(光洋サーモ製、Model-200)にてオキシ塩化 リン(POCl₃)、窒素、酸素の混合ガス雰囲気で熱 処理を行うことにより、リン (P) 拡散を行って n層を形成した。その後、プラズマCVD装置 (Shimadzu製、SLCM-24)を用い、SiH₄ガス、NH₃ ガスおよびN₂ガスを原材料として反射防止膜 (SiN_x膜)を、膜厚80nm、屈折率2.1程度とな るよう制御して成膜形成した。拡散炉とプラズ マCVD装置はH.23年度初頭に新規導入された 装置を使用した。反射防止膜の厚みと屈折率の 評価にエリプソメーターを用いた。作製した基 板上に、裏アルミ電極、表銀電極ペースト標準 品NP-4692Dをスクリーン印刷法で付着・乾燥後、 通常条件と+30℃の2条件で焼成した(Figure 1)。 ソーラーシミュレータ(ワコム電創製、WXS-156S-10, AM1.5G)を使用し、作製したセルの電 気的特性の評価を行った。

結果および考察: Table 1 に P 拡散条件を変 化させたときの n 層のシート抵抗を示す。また、 Figure 2 に作製した基板表面 P 濃度を示す。P 拡散を任意に制御することができ、60~80Ω/sq のシート抵抗のセルを作製できた。また、シー ト抵抗と P 表面濃度の推移傾向を把握できたた

め、Table1に示したシート抵抗違いの表面P濃 度の高い基板を選択し、SiNx膜を堆積させてセ ルを作製した。電極の形成、乾燥・焼成後に行 なった電気特性の結果を Table 2 に示す。昨年度 報告書に示した 60Ω/sq セルよりも今年度導入 装置を用いたセルは電流値が上昇し、P 拡散プ ロファイルから、表面濃度が高すぎると表面再 結合速度が速くなり、電流値が低下することが 考えられる。さらに 80Ω/sq セルでは電流値が 上昇しており、セル表面 P 濃度が電流値に対し ては特に重要であると考えられる。しかし、80 Ω/sq セルの P 表面濃度が低いため、電極との接 触抵抗が増大し、FF が低下した。また、焼成時 に pn 接合へのダメージが入り、Voc も低下した と考えられ、NP-4692D は 80 Ω/sq 以上の基板に は対応できないことがわかった。

焼成温度を高くしても 60Ω/sq セルは電気特 性の変化がなく、80Ω/sq セルでは Voc、FF の 低下が大きくなっており、高シート抵抗セルを 使うと焼成マージンが狭くなると考えられる。

今後の課題: P 拡散工程が出力特性に大きな 影響を与えることから、SIMS を用いた P 拡散 プロファイルをより多く取得し、ペーストの侵 食量制御と P 拡散プロファイルの関係性検討を 継続して行いたい。また、本報告では焼成条件 を 2 条件しか示していないが、焼成温度を低下 させることで、侵食量は減らすことが出来るた め、より広い焼成条件についても検討を行ない、 受光面銀ペーストにおける焼成挙動を解明した い。

論文発表状況・特許出願

未定

<u>参考文献</u>

 Y. Ohshita, Y. Nishikawa, M. Tachibana, V.K. Tuong, T. Sasaki, N. Kojima, S. Tanaka, M. Yamaguchi, J. Crystal Growth, **275**, (2005), 491-494.

 M. Hilali, A. Rohatgi, S. Asheri, TRANSACTIONS ON ELECTRON DEVICES, 51 (2004), 948-955.

Y. Komatsu, G. Galbiati, M. Lamers, P. Venema,
M. Harris, A. Stassen, C. Meyer, M. Donker, A.
Weeber, 24th EUPVSEC (2009)

Figure 1. Firing conditions

radic. 1. Conditions of 1 -diffusio	Table.	1.	Conditions	of P-	-diffusio
-------------------------------------	--------	----	------------	-------	-----------

Sheet	Pre-deposi	tion	P-diffusion		
resistance	Temperature	Time	Temperature	Time	
$[\Omega/sq]$	[°C]	[min]	[°C]	[min]	
60 (heavy)	860	10	860	5	
60 (middle)	830	10	880	5	
60 (light)	830	5	900	5	
80 (heavy)	843	10	843	5	
80 (middle)	810	5	850	5	

Figure. 2. P-concentration profiles (measured by SIMS)

Table. 2. Electrical performance of heavy doped cell.

Ce	Electrical performance				
Firing	Sheet	Jsc	Voc	FF	Eff
condition	resistance	[mA/	[mV]	[%]	[%]
	[Ω/sq]	cm ²]			
Standard	60	36.1	619	76.4	17.1
Standard	80	36.7	608	73.2	16.4
Overfiring	60	36.1	619	76.2	17.0
Overfiring	80	36.8	605	68.7	15.3
Standard	60	31.6	614	77.0	15.1
(Old type)	00	51.0	014	77.0	13.1